
UNCLA> LED

ION PAGE COM S

AD--A205 913 17. G0VI ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT A PERIOD COVERED

Ada Compiler Validation i.mary Report: TeleSoft, 26 Feb. 1988 to 26 Feb. 1989
TeleCen2 Ada Development System, Version 3.20, .MicroVAX 6. PERORINGIRG. REPORT NUMBER

II to MC63020 (Host) and (Target), 800219W-.09037

7. AUTHOR(s) 8. CONTRACT OR 6RANT NUMBER(s)

T,'right-Patterson AF1

Dayton, OH, USA

g. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Wright-Patterson AFB
Dayton, OH, US.-\

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office
United States Department of Defense NUM7R UF PAI L5
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADDRESS(IfdifHerent from Controlhng Offce) 15. SECURI Y CLASS (ofthisreportl)

Wright-Patterson ATB
UNCLASSIFIED

Da yo , O, ':Ei I a CS , F I ATIO N/DO ° u RAD1NG

N/A

15. DIS!RIBJTION STATEMWN (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBJTION STATEMENT (of the absract enteredmnBIock20 Ifd, fferentfromrRpor1)

UNCLASSIFIED F)TIC
-LO -TE

18. SUPPEMENTARY NOTES MAN 1

19. KEYWORDS (Continue on reverse sdr .f necessary and identify by block number)

Ada Progra.m.ing language, Ada Compiler Validation Sumrinary Report, Ada
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue in reverse side if necessary endidentfy by block number)

Tele:o.t, Teleren2 Ada Development System, Version 3.20, Wright-Patterson AFB, YicroVkX

11 ".S 'ersion /4.6 (Host) to .,C68020, implemented on a ',otorola MV 11, 133A-20 board with
an :.CG6,S1 floating-point coprocessor bare machine (Target), ACVC 1.9.

DD 1"c- 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N OIOZ-LF-014-66CI UNCLASSIFIED
SCUPITY CLASSIFICATION OF THIS PAGE (W'enDataEnfe,ed)

L

AVF Control Number: AVF-VSR-128.0189
87-11-30-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880219W1.09037
TELESOFT

TeleGen2 Ada Development System, Version 3.20
MicroVAX II to MC68020,

implemented on a Motorola MVME 133A-20 board
with an MC68881 fioating-point coprocessor

Completion of On-Site Testing:
26 February 1988

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

ACCesic,', r, --- - - --- "

NTtS ,. , ..

OT~C 1

Prepared For:
Ada Joint Program Office

United States Department of Defense 8y
Washington DC 20301-3081 , -J

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System, Version 3.20

Certificate Number: 880219Wl.09037

Host: Target:

MicroVAX II MC68020, implemented on a

VMS Motorola MVME 133A-20 board
Version 4.6 with an MC68881 floating-

point coprocessor
bare machine

Testing Completed 26 February 1988 Using ACVC 1.9

This report has been reviewed and is approved.

~72
Ada Validation Facility
Steven P. Wilson
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ma Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
William S. Ritchie
Acting Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1. 1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.-3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS • 3-5
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

.4

CHAPTER 1

INTRODUCTION

This Validation Summary Report '-Y3 R- describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability 'Ae e An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ads Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
par tizuar operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

I-I

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language construct3 supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 26 February 1988 at TELESOFT, San Diego, CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on tho nignature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programmin. Language.
ANSI/MIL-STD-1815A, February 1983.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.2 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the

form AI-ddddd.

Ada Standard ANSIIMIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and

Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices tor ULie purpose of
m .Intaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
crosa-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Language The Language Maintenance Panel (LMP) is a committee
Maintenance established by the Ada Board to recommend interpretations and
Panel possible changes to the ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected

result.

Target - The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity regarding
a particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

WB- drawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails tj meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and excuted. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that roserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is

i-4

INTRODUCTION

passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacit) requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Stand2r ppe"4 q an implementation to reject programs containing some
features addressed by Class E tests during compilaticn. Therefore, a Class
- test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests checic that incomplete or illegal Ada programs involving
multiple, separately compiled units are det:ztad and no. allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to

c..... k the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
nit3 are not operating correctly, then the validation is n attempted.

1-5

INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system Ior this validation was tested under the
following configuration:

Compiler: TeleGen2 Ada Development System, Version 3.20

ACVC Version: 1.9

Certificate Number: 880219WI.09037

Host Computer:

Machine: MicroVAX II

Operating System: VMS, Version 4.6

Memory Size: 10 megabytes

The host system has a TK50 95MB streaming tape drive, a
reel-to-reel magnetic tape drive, and a Local Area VAX
Cluster.

Target Computer:

Machine: MC68020, implemented on the Motorola

MVME 133A-20 board with a MC68881
floating-point coprocessor

Operating System: bare machine

Memory Size: 1 megabyte

Communications Network: RS-232

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to at least 65 levtls, block statements nested to at least
65 levels, and recursive procedures separately compiled as
subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative part.
(See tests D55A03A..H (8 tests), D56001B, D64005E..G (3 tests),
and D29002K.)

Universal integer calculations.

An 4mplementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64-bit integer calculations. (See tests
D4AO02A, D4A0O2B, D4AOO4A, and D4AO04B.)

Predefined types.

This implementation supports the -dditional predefined types
LONG INTEGER and LONG FLOAT in the package STANDARD. (See tests
B860c1C and B86ooD.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYS7-1:Y.MAX 1NT during compilation, or it may raise
:U.......R. ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUKERICERROR during execution. (See test
E24101A.)

Expression evaluation.

Apparently some default initialization expressions for record
componennts are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand

in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison test is outside the range of the base type.
(See test C45252A.)

Apparently NUMERIC ERROR is raised when a literal operand in a
fixed-point membership test is outside the range of the base type.
(See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to
e-ven. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real

expressions is apparently round away from zero. (See test
C40A14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this

implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

2-3

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINTERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception. (See
test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appD-2rz to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C355021..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications of less than 16 bits for
enumeration types are not supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests T39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported unless aligned on
16 bits. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE
is not supported for library level functions. (See tests LA3OO4A,
LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

2-5

CONFIGURATION INFORMATION

The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAMEERROR if file
input/output is not supported. This implementation exhibits this
behavior for SEQUENTIAL 10.

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAMEERROR if file
input/output is not supported. This implementation exhibits this
behavior for DIRECT 10.

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAMEERROR if file
input/output is not supported. This implementation exhibits this
behavior for TEXT_10.

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations only if the body is compiled before any
instantiations. (See tests CA1012A and CA2009F.)

Gencric package declarations and bodies can be compiled in
separate compilations only if the body is compiled before any
instantiations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was

tested, 24 tests had been withdrawn because of test errors. The AVF

determined that 422 tests were inapplicable to this implementation. All

inapplicable tests were processed during validation testing except for 201

executable tests that use floating-point precision exceeding that supported

by the implementation and 175 executable tests that use file operations not

supported by the implementation. Modifications to the code, processing, or

grading for 10 tests were required to successfully demonstrate the test

objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable

conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 105 1046 1451 17 12 45 2676

Inapplicable 5 5 405 0 6 1 422

Withdrawn 3 2 18 0 1 0 24

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 __1 0 11 12 11.14

Passed 190 494 539 245 166 98 141 327 132 36 232 3 73 2676

Inapplicable 14 79 136 3 0 0 2 0 5 0 2 0 181 422

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 1 24

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 24 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35AO3E C35A03R C37213H C37213J
C37215C C37215E C37215G C37215H C38102C
C41402A - C45614C A74106C C85018B C87BO4B
CC1311B BC3105A AD1AO1A CE2401H

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 422 tests were inapplicable for the
reasons indicated:

A39005B uses a length clause with a SIZE specification of eight
bits. The minimum size for an allocated object under this
compiler is 16 bits. Therefore, the length clause is rejected.

A39005G uses a record representation clause which specifies an
alignment of eight. This compiler forces an alignment of 16.
Therefore, the record representation clause is rejected.

3-2

TEST INFORMATION

C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1). These
clauses are not supported by this compiler.

" C35702A uses SHORTFLOAT which is not supported by this
implementation.

" C35904B raises NUMERIC ERROR instead of CONSTRAINT ERROR.
NUMERIC ERROR is raised during elaboration of the fixed-point
constraint which occurs prior to the compatibility check that
would raise CONSTRAINTERROR.

" The following tests use SHORTINTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BO7B B55BO9D

"C45231D and B86001D require the substitution of a macro for a
predefined numeric type other than INTEGER, SHORT INTEGER,
LONGINTEGER, FLOAT, SHORTFLOAT, and LONGFLOAT. This compiler
does not support any such type.

" C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-
point base types which are not supported by this compiler.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

* CA2009C, CA2009F, BC3204C, and BC3205D contain instantiations of
generics in cases where the body is not available at the time of
the instantiation. As allowed by AI-00408/07, this compiler
creates a dependency on the missing body so that when the actual
body is compiled, the unit containing the instantiation becomes
obsolete.

" CA3004F, EA3004D, and LA3004B use the INLINE pragma for library
level functions, which is not supported by this compiler.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_10 with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

3-3

TEST INFORMATION '

. AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

• The following 175 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102C CE2102G..H(2) CE2102K CE2104A..D(4)
CE2105A..B(2) CE21o6A..B(2) CE2107A..I(9) CE2108A..D(4)
CE2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C(3) CE2201F..G(2)
CE2204A..B(2) CE2208B CE2210A CE2401A..C(3)

CE2401E..F(2) CE2404A CE2405B
CE2406A CE2407A CE2408A CE2409A
CE2410A CE2411A AE3101A CE3102B
EE3102C CE3103A CE3104A CE3107A
CE3108A.B(2) CE3109A CE3110A CE3111A..E(5)
CE3112A..B(2) CE3114A..B(2) CE3115A CE3203A
CE3208A CE3301A..C(3) CE3302A CE3305A
CE3402A..D(4) CE3403A..C(3) CE3403E..F(2) CE3404A..C(3)
CE3405A..D(4) CE3406A..D(4) CE3407A..C(3) CE3408A..C(3)
CE3409A CE3409C..F(4) CE3410A CE3410C..F(4)
CE3411A CE3412A CE3413A CE3413C
CE3602A..D(4) CE3603A CE3604A CE3605A..E(5)
CE3606A..B(2) CE3704A..B(2) CE3704D..F(3) CE3704M..0(3)
CE3706D CE3706F CE3804A..E(5) CE3804IG
CE38041 CE3804K CE3804M CE3805A..B(2)
CE3806A CE3806D..E(2) CE3905A..C(3) CE3905L
CE39o6A..C(3) CE3906E..F(2)

* The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 teits)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation to compensate for legitimate impliampntation
behavior. Modifications are made by the AVF in cases where legitimate
implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting

3-4

TEST INFORMATION

a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for nine Class B tests and one Class E test.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B27005A BA3006A BA3006B BA3007B BA3008A
BA3008B BA3013A

The following tests need a 'PRAGMA LIST (ON);' added at the beginning of

the source file in order to have a complete source/error listing.

B28001R B28001V E28002D

The following tests were graded using a modified evaluation criteria:

a. C45651A requires that the result of the expression in line 227 be
in the range given in line 228; however, this range excludes some
acceptable results. This implementation passes all other checks
of this test, and the AVO ruled that the test is passed.

b. C46014A contains an assignment that is intended to raise an
exception. This implementation performs an optimization--given
that the-assignment is to a dead variable--and thus does not raise
the exception. Because the optimization only affected one check
passed, as all other checks produced the expected results and the

test objective was met.

c. C96001A assumes that DURATION'SMALL >= SYSTEM.TICK; however, the
Ada Standard does not require such a relation. This
implementation executes delay statements with greater accuracy
than CALENDAR.CLOCK can resolve, and so the check on line 97 is
failed. This implementation passes all other checks of this test,
and the AVO ruled that the test is passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the TeleGen2 Ada Developrent System was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3-5

TEST TNFORMATIGN

3.7.2 Test Method

Testing of the TeleGen2 Ada Development System using ACVC Version 1.9 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a cluster of three MicroVAX II hosts operating under VMS,
Version 4.6, and an MC68020, implemented on a Motorola MVME 133A-20 board
with an MC68881 floating-point coprocessor bare machine target. The host
and target computers were linked via RS-232.

A magnetic tape containing all tests except for withdrawn tests, tests
requiring unsupported floating-point precisions, and tests involving
unsupported file I/O features was taken on-site by the validation team for
processing. Tests that make use of implementation-specific values were
customized before being written to the magnetic tape. Tests requiring
modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the MicroVAX II, and all executable tests were
run on the MC68020, implemented on a Motorola MVME 133A-20 board with an
MC68881 floating-point coprocessor. Object files were linked on the host
computer, and executable images were transferred to the target computer via
RS-232. Results were printed from the host computer, with results being
transferred to the host computer via RS-232.

To speed up the ACVC compiling and downloading process, the runtime and
ACVC support packages were partially linked to create a phantom load
module, and downloaded onto the target in a fixed memory location. When
each ACV.C test was linked, the TELESOFT linker resolved any references to
the runtime and support routines into the phantom, and did not include
their code in the generated load module. This substantially reduced the
link time and resultant load module size. The loader, using its fast
checksum recovery mode, ensured that the phantom was intact prior to the
downloading and execution of each ACVC test.

The compiler was tested using command scripts provided by TELESOFT and
reviewed by the validation team. The compiler was tested using all default
option settings except for the following:

Class B tests

Option Effect

MONITOR verbose.
PROCZED continue compilation despite errors, no

continuation prompting at each error.
CPU=MC68020 generate 68020 code.
LIST interspersed listing.
^PTIMIZC see note below.
VIRTUALSPACE set virtual space of library manager greater

than default.
LIBFILE specify the library file to use.

3-6

TEST INFORMATIUN

Executable tests

Option Effect

MONITOR verbose.
PROCEED continue compilation despite errors, no

continuation prompting at each error.
CPU=MC68020 generate 68020 code.
OPTIMIZE * see note below.
VIRTUALSPACE set virtual space of library manager greater

than default.
LIBFILE specify the library file to use.
OPT specify a linker options file.
LOADMODULE output executable in TELESOFT execute from

suitable for downloading to enhance speed.

The optimizer switch OPTIMIZE is equivalent to "OPTIMIZE=ALL" in which
"ALL" stands for "PARALLEL, RECURSE, INLINE, AUTOINLINE".

Option Effect

PARALLEL indicates that one or more of the subprograms

being optimized may be called from parallel tasks.
RECURSE indicates that one or more of the subprograms

interior to the unit/collection being optimized
could be called recursively by an exterior

subprogram.
INLINE enables inline expansion of those subprograms

marked with an INLINE pragma or generated
by the compiler.

AUTOINLINE enables automatic inline expansion of any subprogram

called from only one place, as well as those marked
by an INLINE prague or generated by the compiler.

Tests were compiled, linked, and executed (as appropriate) using a cluster
of three host computers and a single target computer. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at the AVF. The listings examined on-site by the validation team
were also archived.

3.7.3 Test Site

Testing was conducted at TELESOFT, San Diego, CA and was completed on 26

February 1988.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

TELESOFT has submitted the
following Declaration of

Conformance concerning the TeleGen2
Ada Development

System MicroVAX II to MC6 8020 compiler.

A-1

'4

DECLARATION OF CONFORMANCE

Compiler Implementer: TELESOFT
Ada Validation Facility: ASDi'SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiier Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System
Version: Version 3.20

Host Architecture ISA. MicroVAX 11
OS&VER =: VMS, Version 4.6

Target Architecture ISA: MC68020, implemented on the Motorola MVME 133A-20 board
with MC68881 floating-point coprocessor

)S&VER =: bare machine

Implementer's Declaration

i. the undersigned. representing TELESOFT. have implemented no deliberate extensions
to the Ada Language Standard ANSI,MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that TELESOFT is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining said compiler(s) in
comformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compile s) I ed in this declaration shall be made only in the owner's corporate
name. .

T E L E-1 Ol - - A Date: - " /

Raymond A. Parra. Director. Contracts/Legal

Owner's Declaration

I. the undersigned. representing TELESOFT take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure of
the final Validation Summary Report. I further agree to continue to comply with the
Ada trademark policy, as defined by the Ada Joint Program Office. I declare that all of
the Ada language cop- s listed, and their host/target performance are in compliance
with the i a e SL dard ANSI/MIL-STD-1815A.

TEL ESt F " Date: oe -

Raymond A. Parra, Director, Contracts/Legal

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the TeleGen2 Ada Development System, Version 3.20, are described in the
following sections, which discuss topics in Appendix F of the Ada Language
Reference Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of
the package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -2147483648 .. 2147483647;

type FLOAT Is digits 6 range -1.93428E+25 .. 1.93428E+25;
type LONG FLOAT is dig' z i5

range -2.57110087081438E+61 .. 2.57110087081438E+61!

type DURATION is delta 2#1.0#E-14 range -86400. 86400;

end STANDARD;

B-i

APPENDIX F OF THE Ada STANDARD

1. Predefined Pragma.

pragma LIST(ON/OFF);
It may appear anywhere a pragma is allowed. The pragma
has the effect of generating the source compilation.
The listing will begin at the first PRAGMA LIST(ON)
statement if no previous PRAGMA LIST(OFF) statement was
encountered. Otherwise, the listing will begin at the
top of the source.

2. Implementation-Dependent Pragmas.
The following implementation-dependent pragmas are supported:

pragma COMMENT (<string literal>);
It may ..,pear within a compilation unit. The pragma
comment has the effect of embedding the given sequence
of characters in the object code of the compilation
unit.

pragma LINKNAME (<subprogramname>, <stringliteral>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface
pragma for the same <subprogramname>. The pragma
linkname has the effect of making <string literal>
apparent to the linker.

pragma INTERRUPT (<function mapping>);
It may only appear immediately before a simple accept
statement, a while loop directly enclosing a single
accept statement, or a select statement that includes an
interrupt alternative. The pragma interrupt has the
effect that entry calls to the associated entry, on
behalf of an interrupt, are made with a reduced call
overhead.

3. Implementation-Dependent Attributes.

There are no implementation-dependent attributes supported.

4. Specification of Package SYSTEM.

package SYSTEM is
type ADDRESS is access INTEGER;
type SUBPROGRAMVALUE is private;

type NAME is (TeleGen2);

SYSTEM NAME : constant NAME := TeleGen2;
STORAGE UNIT : constant := 8;
MEMORY_5IZE : constant := 2147483647;

-- System-dependent named numbers:

B-2

APPENDIX F OF THE Ada STANDARD

MIN INT : constant :=-2147483648;
MAX INT : constant := 2147483647;
MAX DIGITS : constant 15;
MAX MANTISSA : constant := 31;
FINE DELTA : constant := 1.0 / (2**MAXMANTISSA);
TICK : constant := 10.OE-3;

-- Other system-dependent declarations:

subtype PRIORITY is INTEGER range O..63;

MAX OBJECT SIZE : constant := MAXINT;
MAX RECORD COUNT : constant := MAX_INT;
MAX TEXT I0 COUNT : constant := MAX INT - 1;
MAXTEXTIOFIELD : constant := 1000;

private
type SUBPROGRAMVALUE is

record
PROC ADDR : ADDRESS;
STATIC LINK : ADDRESS;
GLOBAL FRAME : ADDRESS;

end record;
end SYSTEM;

5. Restrictions on Representation Clauses.
The compiler supports the following representation clauses:

Length Clauses : for enumeration and derived integer types
'SIZE attribute.
for access types 'STORAGE SIZE attribute.
for task types 'STORAGE SIZE attribute.
for fixed-point types 'SMALL attribute.

Enumeration Clauses : for character and enumeration types
other than character and boolean.

Record Representation Clauses.

Address Clauses : for objects and entries.

The compiler does NOT support the following representation
clauses:

Enumeration Clauses : for boolean.

Address Clauses : for subprograms, packages, and tasks.

This compiler contains a restriction that allocated objects must
have a minimum allocation size of 16 bits.

B-3

APPENDIX F OF THE Ada STANDARD

6. Implementation-Dependent Naming.
There are no implementation-generated names denoting

implementation-dependent components.

7. Interpretation of Expressions in Address Clauses.

Expressions that appear in address specifications are interpreted
as the first storage unit of the object.

8. Restrictions on Unchecked Conversions.

Unchecked conversions are allowed between any types unless the
target type is an unconstrained record or array type.

9. Input-Output Package Characteristics.

Instantiations of DIRECT _O and SEQUENTIAL_1O are supported with
the following exceptions:

* Unconstrained array types.

* Unconstrained types with discriminants without default values.

In DIRECT 10 the type COUNT is defined as
- type COUNT is range 0..2147483647;

In TEXT 10 the type COUNT is defined as
type COUNT is range 0..2_147_483645;

In TEXT I the type FIELD is defined as
subtype FIELD is INTEGER range 0,_1000;

B-4

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG_IDI (1..199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 (I..199 => 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (0..100 => 'A', 101 => '3', 102..200 > 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (I..100 => 'A', 101 > '4', 102..200 > 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINT LIT (1..197 => '0', 198..200 => "1298"1)

An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..1 94 => '0', 195..200 => "69.0E1")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRINGI (1 => f', 2.-102 => 'A', 103 => "')

A string literal which when
catenated with BIG STRING2
yields the image of BIG_IDI.

$BIGSTRING2 (I => '"', 2.101 => 'A',
A string literal which when 102..103 => "1""")

catenated to the end of
BIG STRING1 yields the image of
BIG_IDI.

$BLANKS (1..180 :> '

A sequence of blanks twenty
characters less than the size
of the-maximum line length.

$COUNT LAST 2147483645
A universal integer
literal whose value is
TEXT IO. COUNT ' LAST.

$FIELDLAST 1000
A .:;ilversal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILE NAME WITH BAD-CHARS "BAD-HARSX}j!@#$^&-Y''

An external file name that
either contains invalid
characters or is too long.

$FITE_NAMEWITHWILDCARDCHAR "WILD-CHAR*.NAM"
An external file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATER.THAN DURATIONBASELAST 131 073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNAL FILENAME1 "BADCHAR*^/%.
An external file name which
contains invalid characters.

$ILLEGALEXTERNAL FILE NAME2 (1..256 :> 'A')
An external file name which
is too long.

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$ INTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER_LASTPLUS 1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHAN DURATION -100_00.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -131_073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

tMAX DIGITS 15
Maximum digits supported for
floating-point types.

$'-AX IN LEN 200
Maximum input line length
permitted by the implementation.

$MAX tNT 21147L83647
A universal integer literal

whose value is SYSTEM.MAXINT.

$MAXINT PLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+I.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAX LEN INT BASED LITERAL (1..2 => "2"" 3..197 > '0', 198..200 => "11:")
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLEN REAL BASED-LITERAL (1..3 :> "16:", 4..196 -> ,0',
A universal real based literal 197..200 :> "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING LITERAL (1 => f"', 2..199 => 'A', 200 => "')

A string literal of size
MAX IN LEN, including the quote
characters.

$MIN INT -21 47483 648
A universal integer literal
whose -value is SYSTEM.MININT.

$NAME SHORTSHORTINTEGER (NOT supported)
A name of. a predefined numeric
type o.oher than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONGINTEGER.

$NEGBASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 24 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not appear
in a listing that has been suspended by a previous "PRAGMA LIST
(OFF);"; The Ada Standard is not clear on this point, and the
matter will be reviewed by the AJPO.

" C34004A: The expression in line 168 yields a value outside the
. inge of the target type T, but there is no handler for
CONSTRAINTERROR.

" C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

" A35902C: The assignment in line 17 of the nominal upper bound of
a fixed-point type to an object raises CONSTRAINT ERROR, for that
value lies outside of the actual range of the type.

" C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAINTERROR, because its upper bound exceeds
that of the type.

" C35A03Z and C35AO3R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard does not support this assumption.

" C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

D-1

WITHDRAWN TESTS

* C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINTERROR.

* C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with type
CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINTERROR.

" C41402A: The attribute 'STORAGESIZE is incorrectly applied to an
object of an access type.

" C45614C: The function call of IDENT INT in line 15 uses an
argument of the wrong type.

" A74106C, C85018B, C87BO4B, and CC1311B: A bound specified in a
fixed-point subtype declaration lies outside of that calculated
for the base type, raising CONSTRAINT ERROR. Errors of this sort
occur at lines 37 & 59, 142 & 143, T6 & 48, and 252 & 253 of the
four tests, respectively.

BC3105A: Lines 159 through 168 expect error messages, but these
lines are correct Ada.

AD1AO1A: The declaration of subtype SINT3 raises CONSTRAINT ERROR
for implementations which select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain the
wrong values.

D-2

